Survey Analysis Workshop

Block 3: Analysing two variables (and sometimes three)

Section 3.2: Three (or more) variables
Sub-section 3.2.1 Elaboration
© Copyright 2019 John F Hall
[New tutorial 20 May 2019: Draft only]

3.2.1.7 Earnings differences 2009: Elaboration

Previous session:
3.2.1.6 Earnings differences 2009: Extracting and saving selected variables

Data source: \quad British Social Attitudes Survey, 2009 ${ }^{1} \quad$ (UKDS SN 6695)
Exemplar (iel test4 (Variables selected for our elaboration exercise: created in 3.2.1.6 above)

On USB DRIVE M:
Fig. 1:

Double click on
BSAS 2009
Fig. 2:

Double click on

[^0]Fig．3：

A test4．sav［DataSet1］－IBM SPSS Statistics Data Editor											－$\square \times$	
Eile Edit	View Data	Iransform	Analyze D	Direct Marketing	Graphs U Utilities	Extensions	Window Help					
	0	－										
	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role	le
1	y ear	Numeric	4	0	Year of survey	None	None	10	傃 Right	\％Scale	\Input	
2	Serial	Numeric	10	0	Serial Number	None	None	10	三Right	S Scale	\Input	
3	rearngrp	Numeric	2	0	Quartile earnin．．．	\｛1，Q1\}...	97－99，－1	10	三Right	－llordinal	\Input	
4	REarn	Numeric	2	0	R＇s own gross．．．	\｛－1，Skip，n．．．	97－99，－1	7	R Right	－llordinal	\Input	
5	REarnQ	Numeric	2	0	Respondent e．．．	\｛－1，Skip，n．．．	－1，7， 8	8	雨 Right	－Ordinal	\Input	
6	RSex	Numeric	2	0	Sex of respon．．．	\｛1，Male\} \ldots	None	5	\＃Right	\＆Nominal	\pm Input	
7	RAge	Numeric	2	0	What was R＇s．．．	\｛97，97＋\}_.	None	6	ERight	\％Scale	\pm Input	
8	RAgeCat	Numeric	2	0	Age of respon．．．	\｛1，18－24\}...	8	9	碃 Right	－Ordinal	\ Input	
9	RAgeCat2	Numeric	2	0	Age of respon．．．	\｛1，18－24\}...	9	10	雨 Right	－Ordinal	\Input	
10	REmploye	Numeric	2	0	Is R an emplo．．．	\｛－9，Refusa．．．	－9－－1	9	R Right	Ordinal	\Input	
11	EJbHrCal	Numeric	2	0	Hours R works．．．	\｛－1，Not em．．．	5－9，－1	10	플 Right	Ordinal	\Input	
12	SJbHrCal	Numeric	2	0	Hours R works．．．	\｛－1，Not sel．．．	－1，5，9	10	邫 Right	－Ordinal	\Input	
13	RNSEGGrp	Numeric	2	0	Resp：SEG＜g．．．	\｛－1，Never ．．．	－1，7， 8	10	Right	－Ordinal	\ Input	
14	RNSocCl	Numeric	2	0	Respondent ：．．．	\｛－1，Never ．．．	$-1,7,8$	8	硣 Right	－Ordinal	\Input	
15	Tea	Numeric	2	0	R how old wh．．．	$\{1,15$ or $u \ldots$	6－99	5	ERight	－Ordinal	\Input	
16	HEdQual2	Numeric	2	0	Highest educ．．．	\｛1，Postgra．．．	7， 9	10	险 Right	－ll Ordinal	\ Input	
17	GOR2	Numeric	2	0	Government 0．．．	\｛1，North E．．．	None	5	硣 Right	\＆Nominal	\triangle Input	
18	Country	Numeric	2	0	Country of int．．．	\｛1，England．	None	9	ERight	\＆Nominal	\Input	
19	WtFactor	Numeric	6	4	Final BSA wei．．．	None	None	12	硣 Right	\％Scale	\Input	
20												＝
	11											\checkmark

Data View Variable View

We have already produced frequency tables for the dependent，independent and test variables （See：3．2．1．6 Earnings differences 2009：Extracting and saving selected variables pp．21－24）
［NB：Cases with no earnings from paid work have already been discarded．］
The dependent variable［REarn］has too many categories：［REarnQ］has only four．
frequencies rearnq．${ }^{2}$
Table 1：
REarnQ Respondent earnings quartiles

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 less than 11999	395	23.4	23.4	23.4
	2 12000－19999	414	24.5	24.5	47.9
	$320000-31999$	467	27.6	27.6	75.5
4 32000 or more	413	24.5	24.5	100.0	
Total			1689	100.0	100.0

［NB：No £ sign available in SPSS 12］
The value labels of［REarnQ］denote specific earnings intervals．Rather than change the labels from earnings intervals to quartile groupings，it is better to create a new variable［rearngrp］．

To create a new variable［rearngrp］with four approximately equal groups and different value labels：

```
compute rearngrp = rearnq.
variable level rearngrp (ordinal).
variable labels rearngrp 'Quartile earnings group'.
value labels rearngrp 1 'Q1' 2 'Q2' 3 'Q3' 4 'Q4'.
```

[^1]In this session [rearngrp] will be the dependent variable.
frequencies rearngrp.
Table 2:
rearngrp Quartile earnings group

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Q1	395	23.4	23.4	23.4
	2 Q2	414	24.5	24.5	47.9
	3 Q3	467	27.6	27.6	75.5
	4 Q4	413	24.5	24.5	100.0
	Total	1689	100.0	100.0	

crosstabs rsex by rearngrp /cells count row.
Table 3:
RSex Sex of respondent * rearngrp Quartile earnings group Crosstabulation

		rearngrp Quartile earnings				Total
		Q1			Q2	Q3

Table 3 is our starting point for elaboration ${ }^{3}$, a method which compares percentages of cases falling into (specified) categories of the dependent variable, within categories of independent and test variables. Independent and test variables should preferably be regrouped into two categories (dichotomised) or at most three (trichotomized).

Elaboration model

$$
\mathbf{X} \rightarrow \mathbf{Y} . \mathbf{T} \quad \text { (the effect of } \mathbf{X} \text { on } \mathbf{Y} \text { controlling for } \mathbf{T} \text {) where: }
$$

$\mathbf{Y}=$ Dependent variable
X = Independent variable
$\mathrm{T}_{\mathrm{n}}=$ Test variable(s)
Y (Dependent) $\quad X$ (Independent) $\quad T_{n}$ (Test or control)

Gross earnings from paid work	Sex	T_{1}	Working full time or part time
		T2	Employee or self employed
		T3	Economic sector
		T4	Socio-economic grade of work
		T5	Years of full-time education
		T6	Qualifications
		T7	Age
		T8	Geographical region

[^2]We are now ready to produce:
a) zero-order (two-way) tables comparing the gross earnings (before tax and National Insurance) of:

1: Men and women
2: Categories within the selected test variables
b) $1^{\text {st }}$ order (three-way) contingency tables to see what happens to differences in gross earnings between men and women when controlling for a third (test) variable

The first example compares the gross earnings (before tax and national Insurance) of men and women controlling for mode of work (full-time or part-time).

There is no single variable denoting part- and full- time work. There are two separate variables, one for employees [EjbHrCal] and another [SJbHrCaI] for the self-employed:
[EjbHrCal] "Hours R works per week, including overtime [employee]."
[SJbHrCal] "Hours R works per week, including overtime [self-employed]."
frequencies ejbhrcai sjbhrcai.
Table 4:
EJbHrCal Hours R works per week, including overtime [employee]. DV:Q1008

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	110-15 hours a week	82	2.4	5.1	5.1
	2 16-23 hours a week	183	5.3	11.5	16.6
	3 24-29 hours a week	90	2.6	5.6	22.3
	430 or more hours a week	1228	35.9	77.0	99.2
	5 Varies too much to say	7	0.2	0.4	99.7
	8 Don't know	4	0.1	0.3	99.9
	9 Refusal	1	0.0	0.1	100.0
	Total	1595	46.6	100.0	
Missing Total	-1 Not employee	1826 3421	53.4 100.0		

For statistical analysis codes 5,8 and 9 should be treated as missing:
Table 5:
SJbHrCal Hours R works per week, including overtime [self-employed]. DV:Q1010

				Cumulative Percent	
Falid	1 10-15 hours a week	16	0.5	6.2	6.2
	$216-23$ hours a week	38	1.1	14.6	20.8
	3 24-29 hours a week	16	0.5	6.2	26.9
	4 30 or more hours a week	183	5.3	70.4	97.3
	5 Varies too much to say	5	0.1	1.9	99.2
	9 Refusal	2	0.1	0.8	100.0
	Total	260	7.6	100.0	
Missing	-1 Not self-employed	3161	92.4		
Total					

For statistical analysis codes 5 and 9 should be treated as missing:
missing values ejbhrcai (-1 5 thru 9) sjbhrcai (-159).
frequencies ejbhrcai sjbhrcai.
Table 6:
EJbHrCal Hours R works per week, including overtime [employee].

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 10-15 hours a week	76	4.5	5.2	5.2
	2 16-23 hours a week	163	9.7	11.2	16.4
	3 24-29 hours a week	84	5.0	5.8	22.1
	430 or more hours a week	1137	67.3	77.9	100.0
	Total	1460	86.4	100.0	
Missing	-1 Not employee	222	13.1		
	5 Varies too much to say	5	0.3		
	8 Don't know	2	0.1		
	Total	229	13.6		
Total		1689	100.0		

Table 7:

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 10-15 hours a week	13	0.8	6.0	6.0
	2 16-23 hours a week	36	2.1	16.5	22.5
	3 24-29 hours a week	14	0.8	6.4	28.9
	430 or more hours a week	155	9.2	71.1	100.0
	Total	218	12.9	100.0	
Missing	-1 Not self-employed	1467	86.9		
	5 Varies too much to say	3	0.2		
	9 Refusal	1	0.1		
	Total	1471	87.1		
Total		1689	100.0		

Variables [EjbHrCal] and [SJbHrCal] are mutually exclusive, but a new variable [workhours] combining information from both variables can be generated with:
compute workhours = max (ejbhrcai, sjbhrcai).
value labels workhours

$$
\begin{aligned}
& 1 " 10-15 \text { hours a week " } 2 " 16-23 \text { hours a week " } \\
& 3 " 24-29 \text { hours a week " } 4 " 30 \text { or more hours a week ". }
\end{aligned}
$$

frequencies workhours.
Table 6:

workhours						
		Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	1 10-15 hours a week	89	5.3	5.3	5.3	
	2 16-23 hours a week	199	11.8	11.9	17.2	
	3 24-29 hours a week	98	5.8	5.8	23.0	
	430 or more hours a week	1292	76.5	77.0	100.0	
	Total	1678	99.3	100.0		
Missing	System ${ }^{4}$	11	0.7			
Total		1689	100.0			

[^3]For elaboration purposes we need only two categories "Full-time" and "Part-time":
recode workhours (23=1)($4=2$)(else = copy) into workmode.
variable labels workmode 'R works full- or part- time'.
value labels workmode 1 'Part-time' 2 'Full-time' .
frequencies workmode.

Table 7:

workmode (R works full- or part- time)

				Cumulative Percent	
Valid	1 Part-time	Frequency	Percent	Valid Percent	22.9
	2 Full-time	1292	76.5	23.0	23.0
	Total	1678	99.3	100.0	100.0
Missing	System	11	0.7		
Total		1689	100.0		

All the variables we need have now been extracted, generated and checked. Save the file as test5.sav on USB Drive M:

```
save outfile = 'M:\BSAS 2009\test5.sav'
    /keep year serial
        rearn rearnq rearngrp
        rsex rage ragecat ragecat2
        remploye workhours workmode
        ejbhrcai sjbhrcai rnseggrp rnsoccl
        tea hedqual2
        gor2 country
        wtfactor.
```

File 通 test5 is saved to folder $\|$ BSAS 2009 on USB Drive M:

Elaboration

In this and following sessions the dependent variable will be [rearngrp]

Status	Name	Label
$\mathbf{Y}=$ Dependent	rearngrp	[Gross annual earnings: 4 groups based on quartiles]
$\mathbf{X}=$ Independent	rsex	[Men, Women]
$\mathbf{T}=$ Test	workmode	[Working full-time or part-time]

Our first test variable is [workmode] "R works full -or part-time?".

Frequencies	$\mathbf{Y}, \mathbf{X}, \mathbf{T}$	frequencies rearngrp rsex workmode .
Zero order tables ${ }^{5}$	$\mathbf{X} \rightarrow \mathbf{Y}$ $\mathbf{T} \rightarrow \mathbf{Y}$	crosstabs rsex workmode by rearngrp .

```
1 st order table }\mp@subsup{}{}{6}\quad\mathbf{X G Y.T crosstabs rsex by rearngrp by workmode .
```


Cluttered output

SPSS output can get quite cluttered if you display both names and labels or use too many options for cell contents.

For the following tables, SPSS has been set to display variable values as Labels only.

Edit >> Options >> Output
Variable values in item labels shown as:
Labels

[^4]Initial frequency counts
frequencies rearngrp, rsex, workmode.
Table 8:
rearngrp Quartile earnings group

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Q1	395	23.4	23.4	23.4
	Q2	414	24.5	24.5	47.9
	Q3	467	27.6	27.6	75.5
	Q4	413	24.5	24.5	100.0
	Total	1689	100.0	100.0	

Table 9:
RSex Sex of respondent

| | | | | | Crequency |
| :--- | :--- | ---: | ---: | ---: | ---: | Percent | Valid Percent | Cumulative
 Percent |
| ---: | :--- |
| Valid | Male |
| | Female |

Table 10:
workmode \mathbf{R} works full- or part- time

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Part-time	386	22.9	23.0	23.0
	Full-time	1292	76.5	77.0	100.0
	Total	1678	99.3	100.0	
Missing	System	11	0.7		
Total		1689	100.0		

Zero-order tables

1: Effect of sex on earnings

crosstabs rsex by rearngrp .
Table 11:
RSex Sex of respondent * rearngrp Quartile earnings group Crosstabulation
Count

		rearngrp Quartile earnings group				
	Q1	Q2	Q3	Q4	Total	
RSex Sex of	Male	102	186	247	296	831
respondent	Female	293	228	220	117	858
Total		395	414	467	413	1689

Because there are almost equal numbers of men and women it's clear that the gradients for quartile earnings run in opposite directions.

It's easier to compare percentages than cell counts:
crosstabs rex by rearngrp /cells count row.
Table 12:
RSex Sex of respondent * rearngrp Quartile earnings group Crosstabulation

			rearngrp Quartile earnings group				Total
			Q1	Q2	Q3	Q4	
RSex Sex of respondent	Male	Count	$\begin{array}{r} 102 \\ 123 \% \end{array}$	$\begin{array}{r} 186 \\ 224 \% \end{array}$	$\begin{array}{r} 247 \\ 297 \% \end{array}$	296 35.6%	
	Female	Count	293	228	220	117	858
		\% within RSex	34.1\%	26.6\%	25.6\%	13.6\%	100.0\%
Total		Count	395	414	467	413	1689
		\% within RSex	23.4\%	24.5\%	27.6\%	24.5\%	100.0\%

It's now easier to compare men and women, but the table is a bit cluttered.
crosstabs rsex by rearngrp /cells row.
Table 13:
RSex Sex of respondent * rearngrp Quartile earnings group Crosstabulation
\% within RSex Sex of respondent

		rearngrp Quartile earnings group				
	Q1	Q2	Q3	Q4	Total	
RSex Sex of	Male	12.3%	22.4%	29.7%	35.6%	100.0%
respondent	Female	34.1%	26.6%	25.6%	13.6%	100.0%
Total		23.4%	24.5%	27.6%	24.5%	100.0%

It's now even easier to compare men and women, but we've now lost the base \mathbf{n} for percentages.

2: Effect of workmode on earnings

crosstabs workmode by rearngrp .
Table 14:
workmode R works full- or part- time * rearngrp Quartile earnings group Crosstabulation Count

		rearngrp Quartile earnings group			
Total					
	Q1	Q2	Q3	Q4	18

Even with raw counts, the gradients for quartile earnings seem to run in opposite directions.
crosstabs workmode by rearngrp /cells count row.
Table 15:
workmode R works full- or part- time * rearngrp Quartile earnings group Crosstabulation

			rearngrp Quartile earnings group		Total		
		Q1	Q2	Q3	Q4		
workmode R works	Part-time	Count	241	86	41	18	386
full- or part- time		\% within workmode	62.4%	22.3%	10.6%	4.7%	100.0%
	Full-time	Count	150	328	423	391	1292
		\% within workmode	11.6%	25.4%	32.7%	30.3%	100.0%
Total	Count	391	414	464	409	1678	
		\% within workmode	23.3%	24.7%	27.7%	24.4%	100.0%

You can compare the percentages, but the table is a bit cluttered.
crosstabs workmode by rearngrp/cells row.
Table 16:
workmode R works full- or part- time * rearngrp Quartile earnings group Crosstabulation
$\%$ within workmode R works full- or part- time

		rearngrp Quartile earnings group			Total
	Q1	Q2	Q3	Q4	

It's easier to compare people working full-time or part-time, but there is now no base \mathbf{n} for percentages.

1st order tables

1: Effect of sex on earnings, controlling for workmode

crosstabs rsex by rearngrp by workmode.
Table17:
RSex Sex of respondent * rearngrp Quartile earnings group * workmode R works full- or part- time Crosstabulation
Count

			rearngrp Quartile earnings group				Total
			Q1	Q2	Q3	Q4	
workmode R works full- or part- time Part-time \quad RSex Sex of respondent Male		Male	44	23	9	13	89
Part-time		Female	197	63	32	5	297
	Total		241	86	41	18	386
Full-time	RSex Sex of respondent	Male	56	163	237	279	735
		Female	94	165	186	112	557
	Total		150	328	423	391	1292
Total	RSex Sex of respondent	Male	100	186	246	292	824
		Female	291	228	218	117	854
	Total		391	414	464	409	1678

Useful for checking the structure of the sample, but difficult to interpret.
crosstabs rsex by rearngrp by workmode /cells count row.
Table18:
RSex Sex of respondent * rearngrp Quartile earnings group * workmode R works full- or parttime Crosstabulation

CROSSTABS output displays both cell counts and row \%, so the table is now completely cluttered, unreadable and unusable: you certainly couldn't publish it like this.
crosstabs rsex by rearngrp by workmode /cells row.
Table19:
RSex Sex of respondent * rearngrp Quartile earnings group * workmode R works full- or part- time Crosstabulation
\% within RSex Sex of respondent

workmode R works full- or part- time			rearngrp Quartile earnings group				Total
			Q1	Q2	Q3	Q4	
Part-time	RSex Sex of respondent	Male	49.4\%	25.8\%	10.1\%	14.6\%	100.0\%
		Female	66.3\%	21.2\%	10.8\%	1.7\%	100.0\%
	Total		62.4\%	22.3\%	10.6\%	4.7\%	100.0\%
Full-time	RSex Sex of respondent	Male	7.6\%	22.2\%	32.2\%	38.0\%	100.0\%
		Female	16.9\%	29.6\%	33.4\%	20.1\%	100.0\%
	Total		11.6\%	25.4\%	32.7\%	30.3\%	100.0\%
Total	RSex Sex of respondent	Male	12.1\%	22.6\%	29.9\%	35.4\%	100.0\%
		Female	34.1\%	26.7\%	25.5\%	13.7\%	100.0\%
	Total		23.3\%	24.7\%	27.7\%	24.4\%	100.0\%

This table is easier to interpret, but is still overly cluttered. It could be manually edited to get rid of the $\%$ signs in the body of the table and substitute base n for 100% in the column headings, but that would take a long time and is possibly error-prone.

Custom Tables

To obtain tables that are less cluttered, and thus much easier to interpret, SPSS has a facility for producing Custom Tables.

CTABLES gives full control of output, but the syntax looks very complicated to the uninitiated (ie me!).
The default output can still be a bit cluttered, but it can be modified within the program. The default output can be very sparse for tabulating a single variable, but at least the frequency distribution doesn't display totally unnecessary cumulative percentages for nominal variables.

Within the CTABLES command, tables must be specified one at a time, e.g:

CTABLES

/TABLE <variable>

1: Initial frequency counts

ctables /table rearngrp
/table rsex
/table workmode.
Table20:

		Count
rearngrp Quartile	Q1	395
earnings group	Q2	414
	Q3	467
	Q4	413

Table21:

		Count
RSex Sex of	Male	831
respondent	Female	858

Table22:

		Count
workmode (R works full- Part-time or part- time) Full-time	1296	

Zero-order tables

$X \rightarrow Y \quad$ Effect of sex on earnings

ctables /table rsex by rearngrp
/table workmode by rearngrp.
Table23:

	rearngrp Quartile earnings group				
		Q1	Q2	Q3	Q4
	Count	Count	Count	Count	
RSex Sex of	Male	102	186	247	296
respondent	Female	293	228	220	117

$\mathrm{T}_{1} \rightarrow \mathrm{Y} \quad$ Effect of workmode on earnings
Table24:

		rearngrp Quartile earnings group			
		Q1	Q2	Q3	Q4
	Count	Count	Count	Count	
workmode (R works full-	Part-time	241	86	41	18
or part- time)	Full-time	150	328	423	391

[Note there are no column totals in the above tables.]
To compare groups we need row percentages, not counts, and the percentages need to be based on the row totals.

In CTABLES these are specified by: [ROWPCT.COUNT].
ctables /table sex by rearngrp [rowpct.count]
/table workmode by rearngrp [rowpct.count].
Table25:

	rearngrp Quartile earnings group				
	Q1	Q2	Q3	Q4	
	Row N \%	Row N \%	Row N \%	Row N \%	
RSex Sex of	Male	12.3%	22.4%	29.7%	35.6%
respondent	Female	34.1%	26.6%	25.6%	13.6%

Table26:

	rearngrp Quartile earnings group				
		Q1	Q2	Q3	Q4
	Row $\mathrm{N} \%$	Row $\mathrm{N} \%$	Row $\mathrm{N} \%$	Row $\mathrm{N} \%$	
workmode (R works full-	Part-time	62.4%	22.3%	10.6%	4.7%
or part- time)	Full-time	11.6%	25.4%	32.7%	30.3%

Unlike the CROSSTABS command, CTABLES allows you to display the row totals in the same table: you can request TOTALS [COUNT] as an additional element inside the square brackets:
ctables /table sex by rearngrp3 [rowpct.count totals [count]]
However, to display the actual totals you need an additional line for each/TABLE specification:

> /categories variables = rearngrp3 total=yes.
ctables /table rsex by rearngrp [rowpct.count totals [count]] /categories variables = rearngrp total=yes
/table workmode by rearngrp [rowpct.count totals [count]] /categories variables = rearngrp total=yes.

Table27:

	rearngrp Quartile earnings group					
	Q1	Q2	Q3	Q4	Total	
	Row N \%	Row $\mathrm{N} \%$	Row $\mathrm{N} \%$	Row N \%	Count	
RSex Sex of	Male	12.3%	22.4%	29.7%	35.6%	831
respondent	Female	34.1%	26.6%	25.6%	13.6%	858

Table28:

		rearngrp Quartile earnings group				
	Q1	Q2	Q3	Q4	Total	
	Row $\mathrm{N} \%$	Row $\mathrm{N} \%$	Row $\mathrm{N} \%$	Row $\mathrm{N} \%$	Count	
workmode (R works full-	Part-time	62.4%	22.3%	10.6%	4.7%	386
or part- time)	Full-time	11.6%	25.4%	32.7%	30.3%	1292

These tables are now much easier to read and interpret, but they are still slightly cluttered. They can be further improved by changing the column headers from Row $\mathbf{N} \%$ to a simple \% and Count to ($n=100 \%$) and then by getting rid of all the \% signs in the body of the table.

To do this, the elements in the /TABLES specification need to be extended by adding labels in double primes eg: [ROWPCT.COUNT "\%"] and [COUNT "n = 100\%"]

The default formats are integer for cell counts and one decimal place for percentages, but if needed the latter can be changed by adding a format eg:

[ROWPCT.COUNT f4.2]

However, two decimal places for percentages seems a bit pointless for these data. We're trying to reduce the clutter, not add to it!

ctables

/table rsex by rearngrp [rowpct.count f5.1 "\%" totals [count " $n=100 \%$ "]] /categories variables= rearngrp total=yes
/table workmode by rearngrp [rowpct.count f5.1 "\%" totals [count " $n=100 \%$ "]]
/categories variables= rearngrp total=yes.
Table29:

		rearngrp Quartile earnings group				
		Q1	$\begin{aligned} & \hline \text { Q2 } \\ & \hline \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Q3 } \\ & \hline \% \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Q4 } \\ & \hline \% \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Total } \\ \hline \mathrm{n}=100 \% \end{gathered}$
		\%				
RSex Sex of respondent	Male	12.3	22.4	29.7	35.6	831
	Female	34.1	26.6	25.6	13.6	858
	Epsilon ${ }^{7}$	-21.9	-4.2	+4.1	+22.0	

I wonder if CTABLES can be modified to produce tables with epsilons?

[^5]Table30:

		rearngrp Quartile earnings group				
		Q1	$\begin{aligned} & \hline \text { Q2 } \\ & \hline \% \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Q3 } \\ \hline \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { Q4 } \\ & \hline \% \\ & \hline \end{aligned}$	$\begin{gathered} \text { Total } \\ \mathrm{n}=100 \% \end{gathered}$
		\%				
workmode (R works full- or part- time)	Part-time	62.4	22.3	10.6	4.7	386
	Full-time	11.6	25.4	32.7	30.3	1292
	Epsilon	50.8	-3.1	-22.1	-25.6	

The above tables do not have column totals for the income groups as it's easier to compare the income groups of men/women and full-time/part-time workers without them (and to calculate the percentage point differences, epsilons).

For elaboration purposes you need to compare these conditional distributions with the global distribution to see how it has been partitioned when controlling for test variables. More test variables can be added at any stage.

Both variables can be included in the same table if X and T_{1} are linked with $a+$ sign.

ctables

/table rsex [c] + workmode [c] by rearngrp [c]
[rowpct.count f8.1 "\%" totals[validn f8.0 "n= 100\%"]]
/categories variables= sex workmode rearngrp total=yes position=after.
Table31:

		rearngrp Quartile earnings group				
		Q1	Q2	Q3	Q4	Total
	$\%$	$\%$	$\%$	$\%$	$\mathrm{n}=100 \%$	
RSex Sex of respondent	Male	12.3	22.4	29.7	35.6	831
	Female	34.1	26.6	25.6	13.6	858
workmode (R works full--	Part-time	62.4	22.3	10.6	4.7	386
or part- time)	Full-time	11.6	25.4	32.7	30.3	1292
	Total	23.3	24.7	27.7	24.4	1678

First order nested tables

1: $X \rightarrow Y . T_{1}$
2: $X \rightarrow Y . T_{2}$
To produce three-way contingency tables in CTABLES, the specification of variables is slightly different. One pair of variables has to linked by $>$ (variable on the right of $>$ is nested in categories of the variable on the left).

There are three ways of producing such tables:
$\mathbf{X}>\mathbf{T}$ by \mathbf{Y}
$\mathbf{T}>\mathbf{X}$ by \mathbf{Y}
$\mathbf{X}>\mathbf{Y}$ by \mathbf{T}

1: $\mathbf{X}>\mathrm{T}_{1}$ by Y

*Nest workmode within sex.

ctables

/table rsex > workmode by rearngrp
[rowpct.count f8.1 "\%" totals[validn f8.0 "n= 100\%"]]
/categories variables= sex workmode rearngrp total=yes position=after.

Table32:

					rngrp	artile e	ings gra	
				Q1	Q2	Q3	Q4	Total
				\%	\%	\%	\%	$\mathrm{n}=100 \%$
RSex Sex of	Male	workmode	Part-time	49.4	25.8	10.1	14.6	89
respondent			Full-time	7.6	22.2	32.2	38.0	735
			Total	12.1	22.6	29.9	35.4	824
	Female	workmode	Part-time	66.3	21.2	10.8	1.7	297
			Full-time	16.9	29.6	33.4	20.1	557
			Total	34.1	26.7	25.5	13.7	854

2: $\mathrm{T}_{1}>\mathbf{X}$ by \mathbf{Y}

*Nest sex within workmode.

ctables

/table workmode > rsex by rearngrp
[rowpct.count f8.1 "\%" totals[validn f8.0 "n= 100\%"]]
/categories variables= rsex workmode rearngrp total=yes position=after.
Table33:

				rearngrp Quartile earnings group				
				$\begin{array}{\|c\|} \hline \text { Q1 } \\ \hline \% \\ \hline \end{array}$	$\begin{gathered} \text { Q2 } \\ \hline \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Q3 } \\ \hline \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Q4 } \\ \hline \% \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total } \\ \hline \mathrm{n}=100 \% \\ \hline \end{array}$
workmode (R works full- or part- time)	Parttime	RSex Sex of respondent	Male	49.4	25.8	10.1	14.6	89
			Female	66.3	21.2	10.8	1.7	297
			Total	62.4	22.3	10.6	4.7	386
	Fulltime	RSex Sex of respondent	Male	7.6	22.2	32.2	38.0	735
			Female	16.9	29.6	33.4	20.1	557
			Total	11.6	25.4	32.7	30.3	1292
	Total	RSex Sex of respondent	Male	12.1	22.6	29.9	35.4	824
			Female	34.1	26.7	25.5	13.7	854
			Total	23.3	24.7	27.7	24.4	1678

3: \mathbf{X} by $\mathbf{T}_{1}>\mathbf{Y}$

ctables

/vlabels variables=rsex rearngrp workmode display=none
/table rsex by workmode > rearngrp
[rowpct.count f5.1 "\%" totals [count " $n=100 \%$ "]]
/categories variables= rsex workmode rearngrp total=yes position=after.
Table34:

	Part-time					Full-time					Total				
	Q1	Q2	Q3	Q4	Total	Q1	Q2	Q3	Q4	Total	Q1	Q2	Q3	Q4	Total
	\%	\%	\%	\%	$n=100 \%$	\%	\%	\%	\%	$\mathrm{n}=100 \%$	\%	\%	\%	\%	$\mathrm{n}=100 \%$
Male	49.4	25.8	10.1	14.6	89	7.6	22.2	32.2	38.0	735	12.1	22.6	29.9	35.4	824
Female	66.3	21.2	10.8	1.7	297	16.9	29.6	33.4	20.1	557	34.1	26.7	25.5	13.7	854
Total	62.4	22.3	10.6	4.7	386	11.6	25.4	32.7	30.3	1292	23.3	24.7	27.7	24.4	1678

Perhaps not!

To get separate tables for workmode:

temporary.

select if workmode $=1$.
ctables
/vlabels variables=rsex rearngrp display=none
/table rsex by rearngrp
[rowpct.count f5.1 "\%" totals [count "n= 100\%"]]
/categories variables= rsex rearngrp total=yes position=after.
Table35: Part time workers

	Q1	Q2	Q3	Q4	Total
	\%	$\%$	$\%$	$\%$	$\mathrm{n}=100 \%$
Male	49.4	25.8	10.1	14.6	89
Female	66.3	21.2	10.8	1.7	297
Total	62.4	22.3	10.6	4.7	386

temporary.
select if workmode $=2$.
ctables
/vlabels variables=rsex rearngrp display=none
/table rsex by rearngrp
[rowpct.count f5.1 "\%" totals [count "n= 100\%"]]
/categories variables= rsex rearngrp total=yes position=after.
Table36: Full time workers

	Q1	Q2	Q3	Q4	Total
	$\%$	\%	$\%$	$\%$	$\mathrm{n}=100 \%$
Male	7.6	22.2	32.2	38.0	735
Female	16.9	29.6	33.4	20.1	557
Total	11.6	25.4	32.7	30.3	1292

We should now discard the part-time workers and restrict future analysis to those working full time.
select if workmode $=2$.
save outfile = 'M:\BSAS 20091test6.sav' .

11. UKDA-6695-spss	24/07/2018 00:50	File Folder	
(\%) 6695spss_fa3ff1f37a5f7dd3c4ff6d62b3923ac4	29/04/2019 20:42	ZIP File	4,229 KB
(1ilin test1	12/05/2019 11:14	SPSS Statis...	3,686 KB
(17) test2	12/05/2019 21:22	SPSS Statis...	63 KB
(1ient test3	12/05/2019 21:22	SPSS Statis...	65 KB
(1ilin test4	16/05/2019 08:54	SPSS Statis...	65 KB
(19ipl test5	17/05/2019 18:29	SPSS Statis...	68 KB
(1i] test6	20/05/2019 05:25	SPSS Statis...	54 KB

[^6]Appendix 1: SPSS syntax for 3.2.1.7

* Encoding: UTF-8.
frequencies rearnq.
compute rearngrp = rearnq.
variable level rearngrp (ordinal).
variable labels rearngrp 'Quartile earnings group'.
value labels rearngrp 1 'Q1' 2 'Q2' 3 'Q3' 4 'Q4'.
frequencies rearngrp.
crosstabs rsex by rearngrp/cells count row.
frequencies EJbHrCal SJbHrCal .
missing values EJbHrCal (-1 5 thru 9) SJbHrCal (-159).
frequencies EJbHrCal SJbHrCal.
compute workhours $=\max (\mathrm{EJbHrCaI}, \mathrm{SJbHrCaI})$. missing values workhours (5 8 9).
value labels workhours
1 " 10-15 hours a week " 2 " 16-23 hours a week " 3" 24-29 hours a week " 4" 30 or more hours a week "
5 " Varies too much to say" 8 " Don't know" 9 " Refusal".
frequencies workhours.
recode workhours $(23=1)(4=2)$ (else = copy) into workmode. variable labels workmode (R works full- or part- time).
value labels workmode
1 'Part-time' 2 'Full-time' 5 "Varies too much to say" 8 "Don't know" 9 "Refusal".
missing values workmode ($-1,5$ thru 9).
frequencies workmode.
save outfile = 'M:\BSAS 2009\test5.sav'
/keep year serial
rearn rearnq rearngrp
rsex rage ragecat ragecat2
remploye workhours workmode
ejbhrcai sjbhrcai rnseggrp rnsoccl
tea hedqual2
gor2 country
wtfactor.
frequencies rearngrp, rsex, workmode .
crosstabs rsex by rearngrp .
crosstabs rsex by rearngrp/cells count row.
crosstabs rsex by rearngrp /cells row.
crosstabs workmode by rearngrp .
crosstabs workmode by rearngrp/cells count row.
crosstabs workmode by rearngrp/cells row.
crosstabs rsex by rearngrp by workmode.
crosstabs rsex by rearngrp by workmode /cells count row.
crosstabs rsex by rearngrp by workmode /cells row.
ctables /table rearngrp
/table rsex
/table workmode.

```
ctables /table rsex by rearngrp
        /table workmode by rearngrp.
ctables /table sex by rearngrp [rowpct.count]
            /table workmode by rearngrp [rowpct.count ].
ctables /table sex by rearngrp3 [rowpct.count totals [count]].
ctables /table rsex by rearngrp [rowpct.count totals [count]]
                /categories variables= rearngrp total=yes
        /table workmode by rearngrp [rowpct.count totals [count]]
        /categories variables = rearngrp total=yes.
ctables
    /table rsex by rearngrp [rowpct.count f5.1 "%" totals [count "n= 100%"]]
        /categories variables = rearngrp total=yes
    /table workmode by rearngrp [rowpct.count f5.1 "%" totals [count "n= 100%"]]
        /categories variables = rearngrp total=yes.
ctables
    /table rsex by rearngrp [rowpct.count f5.1 "%" totals [count "n= 100%"]]
        /categories variables = rearngrp total=yes
    /table workmode by rearngrp [rowpct.count f5.1 "%" totals [count "n= 100%"]]
        /categories variables = rearngrp total=yes .
ctables
            /table rsex > workmode by rearngrp
            [rowpct.count f8.1 "%" totals[validn f8.0 "n= 100%"]]
            /categories variables = sex workmode rearngrp
            total=yes position=after.
ctables
    /table workmode > rsex by rearngrp
    [rowpct.count f8.1 "%" totals[validn f8.0 "n= 100%"]]
    /categories variables= rsex workmode rearngrp
    total=yes position=after.
ctables
    /table variables =rsex rearngrp workmode display=none
    /table rsex by workmode > rearngrp
    [rowpct.count f5.1 "%" totals [count "n= 100%"]]
    /categories variables = rsex workmode rearngrp total=yes position=after.
temporary.
select if workmode = 1.
ctables
    /categories variables=rsex rearngrp display=none
    /categories rsex by rearngrp
    [rowpct.count f5.1 "%" totals [count "n= 100%"]]
    /categories variables = rsex rearngrp total=yes position=after.
```


temporary.

```
select if workmode \(=2\).
ctables
/categories variables =rsex rearngrp display=none
/table rsex by rearngrp
[rowpct.count f5.1 "\%" totals [count "n=100\%"]]
/categories variables= rsex rearngrp total=yes position=after.
select if workmode \(=2\).
save outfile = 'M:\BSAS 2009\test6.sav' .
```


Appendix 2: Epsilons via Excel

Table as in viewer:

	rearngrp Quartile earnings group					
		Q1	Q2	Q3	Q4	Total
		$\%$	$\%$	$\%$	$\%$	$\mathrm{n}=100 \%$
RSex Sex of respondent	Male	12.3	22.4	29.7	35.6	831
	Female	34.1	26.6	25.6	13.6	858

Right click the table

Custom Tables

[DataSet1] M: \BSAS 2009\test5.sav

Double click on the table to
Click on Copy
Open a new Excel sheet:

With the cursor in cell A1 press Ctrl + Vor Right click > Paste

4	A	B	C	D	E	F	G
1			rearngrp Quartile earnings group				
2			Q1	Q2	Q3	Q4	Total
3			\%	\%	\%	\%	$\mathrm{n}=100 \%$
4	RSex Sex of	Male	12.3	22.4	29.7	35.6	831
5	respondent	Female	34.1	26.6	25.6	13.6	858
6							
7							

Write "Epsilon" in B7:

B7		-	$\times \checkmark$	Epsilon			
A	A	B	C	D	E	F	G
1			rearngrp Quartile earnings group				
2			Q1	Q2	Q3	Q4	Total
3			\%	\%	\%	\%	n= 100\%
4	RSex Sex of	Male	12.3	22.4	29.7	35.6	831
5		Female	34.1	26.6	25.6	13.6	858
6							
7		Epsilon					

Highlight cell C7

A	A	B	C	D	E	F	G
1			rearngrp Quartile earnings group				
2			Q1	Q2	Q3	Q4	Total
3			\%	\%	\%	\%	n= 100\%
4	RSex Sex of	Male	12.3	22.4	29.7	35.6	831
5	respondent				25.6	13.6	858
6							
7		Epsilon					

Right click >> Format cells
Click on Number choose Negative numbers 1234.0 change Decimal places from 2 to 1

Format Cells

Click ok
In cell C7 write $=\mathbf{c 4 - c 5}$

A	A	B	C	D	E	F	G
1			rearngrp Quartile earnings group				
2			Q1	Q2	Q3	Q4	Total
3			\%	\%	\%	\%	n= 100\%
4	RSex Sex of	Male	12.3	22.4	29.7	35.6	831
5	respond	Female	34.1	26.6	25.6	13.6	858
6							
7		Epsilon	=c4-c5				

Enter

	rearngrp Quartile earnings group					
		Q1	Q2	Q3	Q4	
		$\%$	$\%$	$\%$	$\%$	
$n=$						
		12.3	22.4	29.7	35.6	
RSex Sex	Male	831				
of						
respondent	Female	34.1	26.6	25.6	13.6	

Epsilon -21.9

Highlight cell C7
Ctrl C or Right click >> Copy

Highlight cells D7 to F7

1	A	B	C	D	E	F	G
1			rearngrp Quartile earnings group				
2			Q1	Q2	Q3	Q4	Total
3			\%	\%	\%	\%	n= 100\%
4	RSex Sex of	Male	12.3	22.4	29.7	35.6	831
5	responde	Female	34.1	26.6	25.6	13.6	858
6							
7		Epsilon	-21.9				

Ctrl V or Right click > Paste

		rearngrp Quartile earnings group				
		Q1	Q2	Q3	Q4	Total
		\%	\%	\%	\%	$n=100 \%$
RSex Sex of respondent	Male	12.3	22.4	29.7	35.6	831
	Female	34.1	26.6	25.6	13.6	858
Epsilon		-21.9	-4.2	4.1	22.0	

You can change the font, size and colour to taste:

AutoSave off 回 ワ・

File Home Insert Page La

Click Home

Click Font and change size to 10 .

Arial	- 7		$A^{\wedge} A^{\sim}$
B $I \underline{U}=\square \rightarrow \Delta \cdot \underline{\square}$			
Font Γ_{2}			

	rearngrp Quartile earnings group				
	Q1	Q2	Q3	Q4	Total
	\%	\%	\%	\%	$\begin{gathered} n= \\ 100 \% \\ \hline \end{gathered}$
RSex Sex Male	12.3	22.4	29.7	35.6	831
$\begin{array}{ll} \text { of } \\ \text { respondent } & \text { Female } \\ \hline \end{array}$	34.1	26.6	25.6	13.6	858
Epsilon	-21.9	-4.2	4.1	22.0	

Excel doesn't seem to have a facility for leading + signs, but you can change the table in Word

	rearngrp Quartile earnings group				
	Q1	Q2	Q3	Q4	Total
	\%	\%	\%	\%	$\begin{gathered} n= \\ 100 \% \\ \hline \end{gathered}$
RSex Sex Male	12.3	22.4	29.7	35.6	831
$\begin{array}{ll} \begin{array}{l} \text { of } \\ \text { respondent } \end{array} & \text { Female } \\ \hline \end{array}$	34.1	26.6	25.6	13.6	858
Epsilon	-21.9	-4.2	+4.1	+22.0	

Bolden the epsilons:

	rearngrp Quartile earnings group				
	Q1	Q2	Q3	Q4	Total
	\%	\%	\%	\%	$\begin{gathered} n= \\ 100 \% \end{gathered}$
RSex Sex Male	12.3	22.4	29.7	35.6	831
of respondent	34.1	26.6	25.6	13.6	858
Epsilon	-21.9	-4.2	+4.1	+22.0	

Change the colour of the positive epsilons:

[^0]: 1 National Centre for Social Research. (2011). British Social Attitudes Survey, 2009. [data collection]. UK Data Service. SN: 6695, http://doi.org/10.5255/UKDA-SN-6695-1

[^1]: ${ }^{2}$ See Appendix 1 for a full listing of all the syntax in this tutorial：lower case is used throughout as it＇s quicker and easier．

[^2]: ${ }^{3}$ For an explanation of the logic involved, see Jim Ring's Statistics notes to accompany course. (pp31-32) See also Rosenberg M, The Logic of Survey Analysis, Basic Books 1968

[^3]: ${ }^{4}$ When generating new numeric variables, SPSS by default assigns zero decimal places. Whenever missing values were found for [EjbHrCal] (-1,5 thru 9) "Not employee" and [SJbHrCal] (-159) "Not self-employed" they have been automatically assigned the value sysmis in [workhours]

[^4]: 5 SPSS command CROSSTABS produces very cluttered output: CTABLES is more complex to use, but the output is far less cluttered. (See: 3.2.1.4 Elaboration 4 (Income differences 2009-2014 CTABLES)

[^5]: ${ }^{7}$ The epsilons (percentage point difference between men and women in each column) were produced separately by copying the body of the table into Excel, subtracting the female percentage from the male percentage, then copying an extract from Excel back into Word] See Appendix 2 for a worked example.

[^6]: End of session: 3.2.1.7: Earnings differences 2009: Elaboration
 Back to:
 Back to:
 3.2.1.6 Earnings differences 2009: Extracting and saving variables
 3.2: Three (or more) variables

